長距離光ファイバ共振器を用いて 光による大規模人工スピンネットワークの生成に成功

長距離光ファイバ共振器を用いて
光による大規模人工スピンネットワークの生成に成功
~光を使って難問を解くコンピュータの実現に道~
http://www.jst.go.jp/pr/announce/20160419/index.html

ポイント
10,000を超える人工スピン群を、長距離光ファイバ共振器を用いて生成した光パラメトリック発振器群で実現。
室温の光パラメトリック発振器群が低温下のスピン群の振る舞いを模擬し、高品質な人工スピンとして使用可能であることを確認。
組合せ最適化問題を高速に解くコンピュータの実現に向けた大きな一歩。


内閣府 総合科学技術・イノベーション会議が主導する革新的研究開発推進プログラム(ImPACT)の山本 喜久 プログラム・マネージャーの研究開発プログラムの一環として、日本電信電話株式会社(東京都千代田区、代表取締役社長 鵜浦 博夫 以下、NTT) NTT物性科学基礎研究所(所長 寒川 哲臣) 量子光制御研究グループの武居 弘樹 主幹研究員、稲垣 卓弘 研究員らのグループは、大阪大学 大学院工学系研究科の井上 恭 教授らと共同で、組合せ最適化問題の解を高速に探索する「コヒーレントイジングマシン」実現の基盤技術である、光による大規模な人工スピン群の生成に成功しました。

通信網、交通網、ソーシャルネットワークなど、社会を構成する様々なシステムが大規模化、複雑化するにつれ、システムの解析や最適化が重要な課題となっています。これらの課題の多くは組合せ最適化問題と呼ばれる、従来のコンピュータが苦手とする数学的問題に帰着されることが知られています。本研究グループでは、光パラメトリック発振器と呼ばれる光の発振状態をスピン注1)として見立て、相互作用する多数のスピンが全体のエネルギーを最低とするようにその向きをとる現象を利用して組合せ最適化問題の解を探索する「コヒーレントイジングマシン」の研究を行っています。

今回、長さ1kmの長距離ファイバ光共振器中に配置した高非線形光ファイバ中の四光波混合注2)により、時間的に多重された10,000を超える光パラメトリック発振器を一括生成することに成功しました。さらに、隣接する発振器を結合することにより、1次元のスピンネットワークを模擬し、光パラメトリック発振器群が低温下のスピンのように振る舞うことを確認しました。

本研究成果は、長距離光ファイバ共振器を用いて時間多重された光パラメトリック発振器を生成する今回の手法が、数千を超えるスピン数を持つコヒーレントイジングマシンの構築のための基盤技術として有用であることを示すものであり、大規模な組合せ最適化問題を従来に比して飛躍的に高速に解くコンピュータの実現に寄与することが期待されます。本研究成果は、2016年4月18日16時(英国時間)に英国の科学誌「ネイチャー・フォトニクス」のオンライン速報版で公開されます。
<研究の背景と経緯>
インターネットや交通網、ソーシャルネットワークなど、社会を構成する様々なシステムが大規模化、複雑化する現在、それらのシステムをいかに効率よく運用するかは重要な課題となっています。これらの課題の多くは、組合せ最適化問題と呼ばれる数学的問題に帰着します。組合せ最適化問題とは、数多くの選択肢の組合せの中から最も良いものを見つけ出す問題で、選択肢が多くなると計算時間が爆発的に増大するため、現代のコンピュータでは解くことが大変困難であることが知られています。 一方、組合せ最適化問題の多くは相互作用するスピン群のモデルである「イジングモデル」のエネルギー最小状態(基底状態)を求める問題に帰着可能です。最近、人工的に作製したスピンを用いてイジングモデルを模擬し、そのエネルギー最小状態を求めることで複雑な組合せ最適化問題を高速に解く試みが多くの研究機関で盛んになってきました。
中でも、コヒーレントイジングマシン(coherent Ising machine)は、光を用いて実現した人工スピン群により高速にイジングモデルを解く可能性がある計算機として現在注目を集めています(図)。本方式では、光パラメトリック発振器(optical parametric oscillator: OPO)をスピンとして用います。OPOは、0またはπの位相しかとらない特殊なレーザ発振器で、位相0,πをそれぞれ上向き、下向きのスピンに対応させることができます。各OPOから出力される光を、光伝送路を介して互いに注入することで、スピン間の相互作用を実現します。光伝送路によりネットワーク化されたOPO群は、多くの場合ネットワーク全体の損失が最小となる位相の組合せで発振するため、イジングモデルの基底状態を与えるスピンの組合せを高い確率で得ることができます。
2014年にスタンフォード大学のグループが4つのOPOを人工スピンとして用いてコヒーレントイジングマシンの原理確認実験に成功しています。しかし、現実社会で課題となっている複雑な組合せ最適化問題に適用するためには、スピン数を飛躍的に増大する必要がありました。
<研究の内容>
今回、長さ1kmという長距離光ファイバ共振器を用いて、時間多重された10,000個を超えるOPOを一括発生することに成功しました(図3)。光ファイバ通信の研究開発で培った技術を用いることで、現実社会で課題となっている複雑な問題を解くことが可能な大規模コヒーレントイジングマシンを実現するための多数の人工スピンの生成が可能となりました。
また、隣接するOPO間に光結合を導入することで、最もシンプルなネットワークである1次元のイジングモデルを模擬する実験を行いました。この実験により、室温で動作するOPO群が、低温下のスピンの振る舞いをよく模擬する、高品質な人工スピンとして動作することを確認しました。

【大規模時分割多重OPOの発生】
① 長さ1kmの高非線形光ファイバ中の四光波混合より、位相0とπの光だけを増幅する位相感応増幅器を実現
② 位相感応増幅器を光ファイバループに挿入することで、長さ1kmの長距離光ファイバ共振器を構築し、位相感応増幅器を2GHzの繰り返しで動作することにより、10,320個のOPOを発生(図3
③ 発生したOPOの位相が0またはπに二値化しており、安定な人工スピンとして使用可能であることを実験で確認(図4
【1次元スピンネットワークの模擬】
① 1ビット遅延干渉計を共振器中に挿入することで、各OPOの光の一部を隣接するOPOに注入し、1次元の結合を実現(図5
② OPO結合の位相を調整することで、ネットワーク化された人工スピンが強磁性的・反強磁性的に振る舞うことを観測(図6)。また、位相感応増幅器の駆動条件を変えることで、ネットワークのエネルギーが低下することを観測(図7)。この結果、室温で動作するOPO群が、高品質な人工スピンとして使用可能であることを確認。
<技術のポイント>
(1) 大規模時分割多重OPOの発生
実験系を図3に示します。パルス幅100ps、繰り返し周波数2GHz(パルス間隔500ps)、波長1531nmおよび1551nmの2波長のポンプパルス列を、波長多重フィルタを介して光共振器に入力します。光ファイバ共振器には、長さ1kmの高非線形光ファイバ、波長フィルタ、偏波コントローラ、および99:1光カプラが含まれています。高非線形光ファイバ中の2波長四光波混合により、2つのポンプ波長の中間点にあたる1541nmにおいてポンプ光の位相に対して0またはπの位相成分だけが増幅される位相感応増幅と呼ばれる現象が得られます。ポンプ光入力直後に位相感応増幅により発生した雑音が種光となり、波長フィルタを透過する1541nmの光のみが光ファイバ共振器中を周回するようにすることで、位相が0またはπのみの光が発振するOPOを実現できます。光の共振器1周時間が約5μs、ポンプパルスの時間間隔が500psなので、1つの共振器だけを用いて10,000を超えるOPOを発生することができます。発生したOPOの一部は99:1カプラにより共振器外に取り出し、1ビット遅延干渉計を用いて隣接パルス間の位相差を測定します。位相差測定の結果を図4(a)に示します。このように、位相差のコサイン成分が1または-1に二極化、すなわち各OPOの位相が0またはπのみをとっています。発生した全OPOに相当する10,320パルスの位相差測定結果のヒストグラムを図4(b)に示します。このように、全てのOPOの位相は0またはπに離散化しており、1万個以上の安定な人工スピンが発生したことが確認できました。

(2)1次元スピンネットワークの模擬実験
生成したOPO群を用いて最もシンプルなネットワークである1次元イジングモデルを模擬する実験を行いました。図3に示す実験系において、位相差測定に用いたものと同様の1ビット遅延干渉計を共振器中に挿入することで、各OPOの光の一部を隣接するOPOに注入し、1次元の結合を実現できます(図5)。干渉計の2光路の位相差を0またはπとすることで、強磁性結合(スピンの向きが同じとなる)および反強磁性結合(逆となる)を実現可能です。位相差測定の結果を図6(a)(干渉計位相差0)、(b)(π)に示します。このように、干渉計の位相差に応じて、スピン群が強磁性的/反強磁性的な振る舞いをすることが確認できました。また、図6(a)中に示すように、強磁性結合においても全てのスピンは揃わずドメイン構造を持つことが観測されました。これは、理論的に示されている「有限温度下では基底状態にならない」という1次元イジングモデルの特性をよく再現しています。さらに、強磁性結合においてポンプ光振幅を変えた場合にドメイン長の分布がどのように変化するかを調べた結果を図7に示します。ポンプ光振幅が発振閾値に近いほど、長いドメインが形成され、基底状態(ドメインが無くなり、全てのスピンが揃う状態)に近づくことがわかります。

>「量子人工脳を量子ネットワークでつなぐ高度知識社会基盤の実現」の要だそうです。
スポンサーサイト

コメントの投稿

非公開コメント

プロフィール

taigen太玄

Author:taigen太玄
FC2ブログへようこそ!

最新記事
最新コメント
最新トラックバック
月別アーカイブ
カテゴリ
検索フォーム
RSSリンクの表示
リンク
ブロとも申請フォーム

この人とブロともになる

QRコード
QR